Michael Murtaugh - techniques of computer vision https://fr.wikipedia.org/wiki/Vision_par_ordinateur http://sicv.activearchives.org/mondo/ interface for archive which is asking questions to the archive scans from university of Gent, splits pdf in pages if you click on layer for 1 page, it reorders images on all other layrs 1er traitement: gradient ex take all the black of an image the more black, the higher it is -> turn black in 3D relief, you look at how steep the peaks are (not how high they are), on top of plateau the gradient would be 0, vitesse de l'eau qui court de la pente gradient has orientation (water runs in certain direction, from black to white) techniques ar enot used for thinking an archive or a text tool for trying to understand what this could mean if we use them for this purpose ordre des images: image avec le plus de gradients chaque pixel a un gradient, mais la résolution est trop faible (raster) 2e traitement: contour il cherche les bords d'objects la couleur n'est pas importante, mais le changement de couleur montre un bord graphic designers use same tools as engineers for treating images (for esthetic / algorithmic objectives) 3e traitement: sift montre les différents points d'entrées sur une image ex Google street view: composée d'images différentes qui sont 'cousu' ensembles -> sift aide à trouver les points correspondants entre 2 images qu'est-ce qui est un 'feature' dans un livre? ou pour 1 image? http://sicv.activearchives.org/logbook/sifting-through-the-pages-of-arkiv/ feature regarde les directions des gradients it looks for correspondences between images -> that's the way in which an algorithm can learn if you feed it 100000 images... consistent in seeing the same details in different images it makes a lot of mistakes (book as database - what could algoirthmic indexing be?) 4e traitement: texture OCR makes a series of different treatments: lay out analysis to see colums, then it looks for lines, and afterwards for letters -> it makes mistakes: sees letters in images 5e traitement: lexicality OCR passes this letter recognition through a dictionary -> shows words that are recognized on a page it is linked to 1 language TODAY proposal: software Tesseract, feed it image, it produces html-output of the page there is more information than what oyu see (structure of paragrpah, line, word is inside it) 3D of text in Firefox