Resources on Machine Learning
===================================================================
Class: Topics in Social Media


Weka tutorials:
---------------------------------------------------------------------------------------------------
http://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
http://www.ibm.com/developerworks/opensource/library/os-weka1/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka2/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka3/index.html


Weka Course and associated Videos:
---------------------------------------------------------------------------------------------------   
https://weka.waikato.ac.nz/dataminingwithweka/preview
https://www.youtube.com/watch?v=Exe4Dc8FmiM

Feature Selection to Improve Accuracy and Decrease Training Time
---------------------------------------------------------------------------------------------------------
http://machinelearningmastery.com/feature-selection-to-improve-accuracy-and-decrease-training-time/


Machine Learning Ontology:
---------------------------------------------------------------------------------------------------
http://www.datascienceontology.com/


Tutorials and videos for further learning:
---------------------------------------------------------------------------------------------------
http://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
http://machinelearningmastery.com/how-to-build-an-intuition-for-machine-learning-algorithms/
http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
https://wakelet.com/wake/atfflSHf5/data-science

Videos:    
---------------------------------------------------------------------------------------------------
sentiment analysis: https://www.youtube.com/watch?v=ytUHvMNnzZk
advertising application: https://www.youtube.com/watch?v=EQhwNcQhP4g
Reinforcement Learning: https://www.youtube.com/watch?v=xM62SpKAZHU
Neural Networks - Deep dream:
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://motherboard.vice.com/read/why-googles-neural-networks-look-like-theyre-on-acid
http://rhizome.org/editorial/2015/jul/10/deep-dream-doggy-monster/

Google Tensorflow (Machine learning engine that is open source)
---------------------------------------------------------------------------------------------------

https://hacked.com/meet-googles-new-open-source-machine-learning-tool-tensorflow/

Writings On Machine Learning Algorithms:
---------------------------------------------------------------------------------------------------



Deep Learning:
---------------------------------------------------------------------------------------------------

    Google's Deep Dream Project:



     Algorithms of the Mind: What machine learning teaches us about ourselves?
https://medium.com/deep-learning-101/algorithms-of-the-mind-10eb13f61fc4

     Computer Science Paper: Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images


Statistics vs. Machine Learning:
---------------------------------------------------------------------------------------------------

Machine Learning vs. Artificial Intelligence:
---------------------------------------------------------------------------------------------------    
https://www.youtube.com/watch?v=WXHM_i-fgGo

Fiction:
---------------------------------------------------------------------------------------------------

    Speak - A novel by Louisa Hall on artificial intelligence:
http://www.harpercollins.com/9780062391193/speak/web-sampler


absolute geekiness on overfitting:
---------------------------------------------------------------------------------------------------
https://www.youtube.com/watch?v=fJMXDlNkYvU

Torch7
---------------------------------------------------------------------------------------------------
Torch7 is an easy to use MATLAB-like environment for machine learning applications. It uses lua, a
simple scripting language, and underlying C with GPUs (CUDA) for fast, parallel processing.
Code & README: https://github.com/torch/torch7
NYU CILVR Lab's Page: http://cilvr.nyu.edu/doku.php?id=software:torch:start
Tutorial: http://code.madbits.com/wiki/doku.php?id=tutorial

Microsoft's Distributed Machine Learning Toolkit
---------------------------------------------------------------------------------------------------
http://www.dmtk.io/

Fun Examples
---------------------------------------------------------------------------------------------------    
How the delivery service Postmates estimates delivery times: http://engineering.postmates.com/Estimating-Delivery-Times/
Analyzing live movement: http://blog.telenor.io/2015/10/26/machine-learning.html
Rap lyrics generator using maching learning: http://www.deepbeat.org/
Identifying author of an email: http://blog.brainattica.com/machine-learning-for-indentify-the-author-of-an-email/
Google Smart Reply uses neural networks to write probable email responses for you: http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html