Welcome to Etherpad!
This pad text is synchronized as you type, so that everyone viewing this page sees the same text. This allows you to collaborate seamlessly on documents!
Get involved with Etherpad at
http://etherpad.org
Resources on Machine Learning
===================================================================
Class: Topics in Social Media
Weka tutorials:
---------------------------------------------------------------------------------------------------
http://machinelearningmastery.com/how-to-run-your-first-classifier-in-weka/
http://www.ibm.com/developerworks/opensource/library/os-weka1/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka2/index.html
http://www.ibm.com/developerworks/opensource/library/os-weka3/index.html
Weka Course and associated Videos:
---------------------------------------------------------------------------------------------------
https://weka.waikato.ac.nz/dataminingwithweka/preview
https://www.youtube.com/watch?v=Exe4Dc8FmiM
Feature Selection to Improve Accuracy and Decrease Training Time
---------------------------------------------------------------------------------------------------------
http://machinelearningmastery.com/feature-selection-to-improve-accuracy-and-decrease-training-time/
Machine Learning Ontology:
---------------------------------------------------------------------------------------------------
http://www.datascienceontology.com/
Tutorials and videos for further learning:
---------------------------------------------------------------------------------------------------
http://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
http://machinelearningmastery.com/how-to-build-an-intuition-for-machine-learning-algorithms/
http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
https://wakelet.com/wake/atfflSHf5/data-science
Videos:
---------------------------------------------------------------------------------------------------
sentiment analysis:
https://www.youtube.com/watch?v=ytUHvMNnzZk
advertising application:
https://www.youtube.com/watch?v=EQhwNcQhP4g
Reinforcement Learning:
https://www.youtube.com/watch?v=xM62SpKAZHU
Neural Networks - Deep dream:
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://motherboard.vice.com/read/why-googles-neural-networks-look-like-theyre-on-acid
http://rhizome.org/editorial/2015/jul/10/deep-dream-doggy-monster/
Google Tensorflow (Machine learning engine that is open source)
---------------------------------------------------------------------------------------------------
https://hacked.com/meet-googles-new-open-source-machine-learning-tool-tensorflow/
Writings On Machine Learning Algorithms:
---------------------------------------------------------------------------------------------------
Deep Learning:
---------------------------------------------------------------------------------------------------
Google's Deep Dream Project:
Algorithms of the Mind: What machine learning teaches us about ourselves?
https://medium.com/deep-learning-101/algorithms-of-the-mind-10eb13f61fc4
Computer Science Paper: Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Statistics vs. Machine Learning:
---------------------------------------------------------------------------------------------------
Machine Learning vs. Artificial Intelligence:
---------------------------------------------------------------------------------------------------
https://www.youtube.com/watch?v=WXHM_i-fgGo
Fiction:
---------------------------------------------------------------------------------------------------
Speak - A novel by Louisa Hall on artificial intelligence:
http://www.harpercollins.com/9780062391193/speak/web-sampler
absolute geekiness on overfitting:
---------------------------------------------------------------------------------------------------
https://www.youtube.com/watch?v=fJMXDlNkYvU
Torch7
---------------------------------------------------------------------------------------------------
Torch7 is an easy to use MATLAB-like environment for machine learning applications. It uses lua, a
simple scripting language, and underlying C with GPUs (CUDA) for fast, parallel processing.
Code & README:
https://github.com/torch/torch7
NYU CILVR Lab's Page:
http://cilvr.nyu.edu/doku.php?id=software:torch:start
Tutorial:
http://code.madbits.com/wiki/doku.php?id=tutorial
Microsoft's Distributed Machine Learning Toolkit
---------------------------------------------------------------------------------------------------
http://www.dmtk.io/
Fun Examples
---------------------------------------------------------------------------------------------------
How the delivery service Postmates estimates delivery times:
http://engineering.postmates.com/Estimating-Delivery-Times/
Analyzing live movement:
http://blog.telenor.io/2015/10/26/machine-learning.html
Rap lyrics generator using maching learning:
http://www.deepbeat.org/
Identifying author of an email:
http://blog.brainattica.com/machine-learning-for-indentify-the-author-of-an-email/
Google Smart Reply uses neural networks to write probable email responses for you:
http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html